Перевод: с русского на английский

с английского на русский

область допустимых значений

  • 1 область допустимых значений

    1. region of permissible values
    2. acceptance region

     

    область допустимых значений

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    3.5 область допустимых значений (region of permissible values): Интервал или интервалы всех допустимых значений параметра.

    Примечание - Если иначе не установлено, предельные значения считают принадлежащими области допустимых значений.

    Источник: ГОСТ Р ИСО 10576-1-2006: Статистические методы. Руководство по оценке соответствия установленным требованиям. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > область допустимых значений

  • 2 область допустимых значений

    Русско-английский большой базовый словарь > область допустимых значений

  • 3 область допустимых значений

    Универсальный русско-английский словарь > область допустимых значений

  • 4 область допустимых значений

    tolerance range, region of acceptability

    Русско-английский словарь по вычислительной технике и программированию > область допустимых значений

  • 5 область допустимых значений

    Russian-English dictionary of construction > область допустимых значений

  • 6 область допустимых значений

    admitted region мат., tolerance range, tolerance region, acceptable region

    Русско-английский научно-технический словарь Масловского > область допустимых значений

  • 7 область допустимых значений величины

    1. tolerance range

     

    область допустимых значений величины

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > область допустимых значений величины

  • 8 естественная область допустимых значений

    Quality control: natural tolerance range

    Универсальный русско-английский словарь > естественная область допустимых значений

  • 9 многосвязная область допустимых значений

    Универсальный русско-английский словарь > многосвязная область допустимых значений

  • 10 область недопустимых значений

    1. region of non-permissible values
    2. infeasible region

     

    область недопустимых значений
    критическая область


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    3.6 область недопустимых значений (region of non-permissible values): Интервал или интервалы всех недопустимых значений параметра.

    Примечание - На рисунке 1 показаны возможные ситуации разделения области возможных значений параметра на область допустимых и недопустимых значений.

    x003.jpg

    Обозначения:

    RPV - область допустимых значений;

    RNV - область недопустимых значений;

    L, LSL, USL, L1 и L2- пределы поля допуска

    Рисунок 1 - Разделение области значений параметра

    Источник: ГОСТ Р ИСО 10576-1-2006: Статистические методы. Руководство по оценке соответствия установленным требованиям. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > область недопустимых значений

  • 11 область допустимых решений

    1. opportunity set
    2. feasible space
    3. feasible set
    4. feasible region
    5. constraint region

     

    область допустимых решений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    область допустимых решений
    допустимое множество
    множество возможностей
    множество допустимых решений
    область допустимых значений
    область свободы решений

    Понятие математического программирования, область (см. рис. к статье Линейное программирование или рис. к статье Нелинейное программирование), в пределах которой осуществляется выбор решений. В принципе она может быть определена разными способами, вплоть до прямого перечисления входящих в нее элементов. В экономических задачах эта область ограничена (отсюда и происходит термин «ограничения«) условиями задачи, наличными ресурсами. Эти ограничения могут быть более жесткими и менее жесткими, соответственно область свободы — более или менее широкой. Она является нулевой, если определяющие ее ограничения составляют несовместную систему уравнений. В линейном программировании область допустимых решений (допустимый многогранник) всегда выпукла и всегда находится в неотрицательном подпространстве многомерного (n-мерного) векторного пространства решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > область допустимых решений

  • 12 запрос в диапазоне значений

    Русско-английский большой базовый словарь > запрос в диапазоне значений

  • 13 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 14 математическое ожидание

    1. expected value
    2. expectation

     

    математическое ожидание

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    математическое ожидание
    Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х), а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > математическое ожидание

  • 15 sequential tolerance region

    French\ \ région de tolérance séquentielle
    German\ \ sequentieller Toleranzbereich
    Dutch\ \ sequentieel tolerantiegebied
    Italian\ \ tolleranza regione sequenziale
    Spanish\ \ región de la tolerancia secuencial
    Catalan\ \ regió de tolerància seqüencial
    Portuguese\ \ região de tolerância sequencial
    Romanian\ \ -
    Danish\ \ -
    Norwegian\ \ -
    Swedish\ \ -
    Greek\ \ διαδοχική περιοχή ανοχή
    Finnish\ \ sekventiaalinen sieto- l. toleranssialue
    Hungarian\ \ szekvenciális tûrési tartomány
    Turkish\ \ ardışık tolerans bölgesi
    Estonian\ \ järjend-tolerantsipiirkond
    Lithuanian\ \ nuoseklusis leistinasis tarpsnis; nuoseklioji leistinoji sritis
    Slovenian\ \ -
    Polish\ \ sekwencyjny obszar tolerancji
    Ukrainian\ \ -
    Serbian\ \ -
    Icelandic\ \ myndaröð umburðarlyndi svæðinu
    Euskara\ \ -
    Farsi\ \ -
    Persian-Farsi\ \ -
    Arabic\ \ منطقة التحمل (الحرجة) للمتسلسل
    Afrikaans\ \ sekwensiële toleransiegebied
    Chinese\ \ 序 贯 容 许 区 城
    Korean\ \ 순차허용역

    Statistical terms > sequential tolerance region

  • 16 statistical tolerance region

    French\ \ région de tolérance statistique
    German\ \ statistischer Toleranzbereich
    Dutch\ \ statistisch tolerantiegebied
    Italian\ \ regione di tolleranza statistica
    Spanish\ \ región de tolerancia estadistica
    Catalan\ \ regió de tolerància estadística
    Portuguese\ \ região de tolerância estatística
    Romanian\ \ -
    Danish\ \ -
    Norwegian\ \ -
    Swedish\ \ statistisk toleransregion
    Greek\ \ στατιστική περιοχή ανοχή
    Finnish\ \ tilastollinen sieto- l. toleranssialue
    Hungarian\ \ statisztikai tûrési tartomány
    Turkish\ \ istatistiksel tolerans bölgesi
    Estonian\ \ statistiline tolerantsipiirkond
    Lithuanian\ \ statistiškai leistina sritis
    Slovenian\ \ -
    Polish\ \ statystyczny obszar tolerancji
    Ukrainian\ \ -
    Serbian\ \ -
    Icelandic\ \ tölfræðileg vikmörk svæðinu
    Euskara\ \ -
    Farsi\ \ nahiyeye mojaze amari
    Persian-Farsi\ \ ناحيه‌هاي تحمل آماري
    Arabic\ \ منطقة التحمل الاحصائية (المنطقة الحرجة)
    Afrikaans\ \ statistiese toleransiegebied
    Chinese\ \ 统 计 容 许 域
    Korean\ \ 통계적 허용영역

    Statistical terms > statistical tolerance region

  • 17 выпуклое программирование

    1. convex programming

     

    выпуклое программирование
    Раздел нелинейного программирования, совокупность методов решения нелинейных экстремальных задач с выпуклыми целевыми функциями (они минимизируются) и выпуклыми системами ограничений. (См. Выпуклость, Вогнутость). Общая задача В.п. состоит в отыскании такого вектора x (т.е. такой точки выпуклого допустимого множества), который доставляет минимум выпуклой функции f(x) или максимум вогнутой функции y(x) (рис. В.4). Для второго случая (выпуклая область допустимых значений и максимум вогнутой функции) ряд авторов предпочитают термин «вогнутое программирование». Выпуклость (вогнутость) важна тем, что гарантирует нахождение оптимального решения задачи, так как соответственно локальные и глобальный экстремумы здесь обязательно совпадают. Критериями оптимальности в первом случае могут быть, например, издержки при различных сочетаниях факторов производства, во втором случае — величина прибыли при этих сочетаниях. Как видим, есть большое сходство между задачами выпуклого (вогнутого) и линейного программирования (последнее можно рассматривать как частный случай первого). Но нелинейность зависимостей делает задачу намного сложнее. Рис.В.4 Задачи вогнутого и выпуклого программирования
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > выпуклое программирование

  • 18 ограничения модели

    1. model constraints

     

    ограничения модели
    Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений — обязательное условие разрешимости модели: в случае несовместности этой системы допустимое множество является пустым. На практике в качестве О.м. часто выступают ресурсы сырья и материалов, капиталовложения, возможные варианты расширения предприятий, потребности в готовой продукции и т.п. Как правило, если снять ограничения задачи, то показатели ее решения окажутся лучше, чем при решении, соответствующем реальным условиям. И, наоборот, если сделать ограничения более жесткими и тем самым сократить возможности выбора вариантов, то решение окажется, как правило, хуже. В первом случае оно будет оптимистичным, во втором — пессимистичным. Это, между прочим, открывает возможность приблизительного, прикидочного решения некоторых оптимизационных задач: меняя ограничения, можно оценить диапазон значений, в пределах которых находятся решения задачи. На рис.O.3 а, б показаны некоторые важнейшие типы О.м., определяющих область допустимых решений в задачах математического программирования. (Для наглядности — в 2-мерном пространстве, в его первом квадранте). Ограничения I, II, Y — линейные, III, IY, YI — нелинейные. Линейными ограничениями являются на рис. O.3а также оси координат; иначе говоря, в область допустимых решений здесь входят все точки, удовлетворяющие I и II, но кроме того, отвечающие условию  x1  ? 0, x2 ? 0 (см. Неотрицательность значений). Кривая IY — ограничение переменной x2 сверху, YI — ограничение той же переменной снизу. Запись типа  a? x ?b  называется двусторонним ограничением. Все показанные ограничения относятся к типу ограничений-неравенств. Что касается ограничений-равенств, то они определяют область допустимых решений как точку (в одномерном пространстве), как линию (в двумерном пространстве), как гиперповерхность (в многомерном пространстве). Экономико-математические ограничения разделяются также на детерминированные (см. рис. O.3 а, б) и стохастические (см. рис.O.3 в). В последнем случае серия кривых АВС отображает возможные случайные реализации стохастического ограничения. В задачах математического программирования системы ограничений (т.е. выражающих их уравнений и неравенств) удобно записывать в векторной форме: f (x) = b или f (x) ? b и т.п., где x — вектор-столбец управляющих переменных xi (i = 1, 2, …, n), b — вектор-столбец, компонентами которого являются функции ограничений bi (примеры см. в статье Математическое программирование). В моделях планирования ограничения снизу имеют смысл плановых заданий (которые допустимо перевыполнять), ограничения сверху — смысл «квот» на выпуск тех или иных видов продукции. При совпадении ограничений сверху и снизу экономический субъект полностью лишается свободы принятия решений в данной области. В системах моделей различаются общесистемные (или глобальные) О.м., имеющие силу для всей моделируемой экономической системы, и локальные ограничения для моделей отдельных подсистем. Несовместность локальных ограничений с общесистемными приводит к неразрешимости системы моделей.   Рис.О.3  Линейные и нелинейные ограничения
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ограничения модели

  • 19 тип данных

    1. data type

     

    тип данных
    Множество величин, объединенных определенной совокупностью допустимых операций.
    [ИСО/МЭК 2382-15]
    [ ГОСТ Р 52292-2004]

    тип данных
    тип

    Множество значений вместе с множеством допустимых над ними операций
    [ ГОСТ 28397-89]

    тип данных
    В программировании тип данных определяет множество допустимых значений объекта (переменной, константы, массива и пр.), формат хранения, размер выделяемой памяти и т.д.
    [ http://www.morepc.ru/dict/]


    Тематики

    EN

    2.35 тип данных (data type): Поименованная совокупность данных с общими статическими и динамическими свойствами, устанавливаемыми формализованными требованиями к данным рассматриваемого типа.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.2 тип данных (data type): Характер данных.

    Примечание - Типом данных могут быть единицы измерения, количественные данные, короткая строка, свободный текст, числовые, логические данные.

    Источник: ГОСТ Р ИСО/ТС 14048-2009: Экологический менеджмент. Оценка жизненного цикла. Формат документирования данных

    7.4.2 тип данных (data type): Характер данных.

    Примечание - Единицы измерения, количественные, короткая строка, свободный текст, числовые, логические значения.

    [ИСО/ТС 14048:2002]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тип данных

  • 20 пространство планирования

    1. du plan

    1.4 пространство планирования ; область планирования en design region;

    Множество допустимых значений предсказывающей                  design space

    переменной                                                                                        fr zone du plan espace

    du plan

    Источник: Р 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    1.4 пространство планирования ; область планирования en design region;

    Множество допустимых значений предсказывающей                  design space

    переменной                                                                                        fr zone du plan espace

    du plan

    Источник: 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    Русско-английский словарь нормативно-технической терминологии > пространство планирования

См. также в других словарях:

  • область допустимых значений — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN acceptance region …   Справочник технического переводчика

  • область допустимых значений — 3.5 область допустимых значений (region of permissible values): Интервал или интервалы всех допустимых значений параметра. Примечание Если иначе не установлено, предельные значения считают принадлежащими области допустимых значений. Источник …   Словарь-справочник терминов нормативно-технической документации

  • область допустимых значений величины — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN tolerance range …   Справочник технического переводчика

  • область недопустимых значений — 3.6 область недопустимых значений (region of non permissible values): Интервал или интервалы всех недопустимых значений параметра. Примечание На рисунке 1 показаны возможные ситуации разделения области возможных значений параметра на область… …   Словарь-справочник терминов нормативно-технической документации

  • область допустимых решений — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] область допустимых решений допустимое множество множество возможностей множество допустимых решений область допустимых значений область свободы решений Понятие математического …   Справочник технического переводчика

  • Область допустимых решений — [feasible set, feasible space, opportunity set] (или область свободы решений, допустимых значений; допустимое множество, множество возможностей, множество допустимых решений) понятие математического программирования, область (см. рис. к статье… …   Экономико-математический словарь

  • область — 3.1 область (area): Трехмерная область или пространство. Источник …   Словарь-справочник терминов нормативно-технической документации

  • область применения — 3.5 область применения: Контекст, в котором уместно использование графического знака для передачи сообщения. Источник: ГОСТ Р 51885 2002: Знаки информационные для общественных мест оригинал документа 3.1 область применения …   Словарь-справочник терминов нормативно-технической документации

  • Область устойчивой работы микросборки ЦМД — 97. Область устойчивой работы микросборки ЦМД Совокупность значений параметров микросборки ЦМД в допустимых пределах их изменений, обеспечивающая функционирование микросборки ЦМД Источник: ГОСТ 28111 89: Микросборки на цилиндрических магнитных… …   Словарь-справочник терминов нормативно-технической документации

  • ОДЗ — область допустимых значений Общество Друзья земли …   Словарь сокращений русского языка

  • ГОСТ Р ИСО 10576-1-2006: Статистические методы. Руководство по оценке соответствия установленным требованиям. Часть 1. Общие принципы — Терминология ГОСТ Р ИСО 10576 1 2006: Статистические методы. Руководство по оценке соответствия установленным требованиям. Часть 1. Общие принципы оригинал документа: 3.3 верхняя граница поля допуска (upper specification limit) USL: Верхняя… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»